Task
A weight G pulls symmetrically on two sliding carriages at the angle alpha. What is the minimum static friction required for equilibrium to prevail? The dimensions of the slide can be neglected here.
Solution
The following video is in German language, but English subtitles are available.
\( \DeclareMathOperator{\abs}{abs} \newcommand{\ensuremath}[1]{\mbox{$#1$}} \)
\[\tag{1} 0={F_S} \sin{\left( \alpha \right) }-{F_x}\]
\[\tag{2} 0={F_y}-{F_S} \cos{\left( \alpha \right) }\]
\[\tag{3} {F_x}={F_y} {µ_0}\]
\[\tag{4} {F_S} \cos{\left( \alpha \right) }=\frac{G}{2}\]
\[\tag{5} {F_S}=\frac{G}{2 \cos{\left( \alpha \right) }}\]
\[\tag{6} 0=\frac{G \sin{\left( \alpha \right) }}{2 \cos{\left( \alpha \right) }}-{F_x}\]
\[\tag{7} {F_x}=\frac{G \sin{\left( \alpha \right) }}{2 \cos{\left( \alpha \right) }}\]
\[\tag{8} {F_y}={F_S} \cos{\left( \alpha \right) }\]
\[\tag{9} {F_y}=\frac{G}{2}\]
\[\tag{10} {µ_0}=\frac{{F_x}}{{F_y}}\]
\[\tag{11} {µ_0}=\frac{2 {F_x}}{G}\]
\[\tag{12} {µ_0}=\frac{\sin{\left( \alpha \right) }}{\cos{\left( \alpha \right) }}\]
\[\tag{13} {µ_0}=\tan{\left( \alpha \right) }\]
the height of the sliding blocks is neglected