Start » Exercises » Engineering Mechanics I » Truss, member forces and bearing loads

# Truss, member forces and bearing loads

The force F is acting under an angle on a truss. The truss has a locating bearing and a floating bearing. Calculate the bearing loads and the member forces for the truss.

F = 10 kN
α = 60°
a = 2 m

### Solution

The following video is in german language.

#### Sketches

The following sketches show the bearing reaction forces, the member and node numbering and the location and direction of the forces at each node.

The forces are solved symbolic first, then the real numbers are set in to calculate the values. Since the angles of the bars are always 45 °, the alternative notation of the trigonometric functions is used.

#### Bearing reactions

Sum of all forces in y-direction

$\tag{1} 0=-F \sin{\left( \alpha \right) }+{F_{\mathit{By}}}+{F_{\mathit{Ay}}}$

Sum of all forces in x-direction

$\tag{2} 0={F_{\mathit{Bx}}}-F \cos{\left( \alpha \right) }$

Sum of all moments around point A

$\tag{3} 0=-2 F a \sin{\left( \alpha \right) }+F a \cos{\left( \alpha \right) }+3 {F_{\mathit{By}}} a$

#### Node equations

Node I x

$\tag{4} 0=\frac{{S_4}}{\sqrt{2}}+{S_1}$

Node I y

$\tag{5} 0=\frac{{S_4}}{\sqrt{2}}+{F_{\mathit{Ay}}}$

Node II x

$\tag{6} 0=\frac{{S_6}}{\sqrt{2}}+{S_2}-{S_1}$

Node II y

$\tag{7} 0=\frac{\mathit{S6}}{\sqrt{2}}+\mathit{S5}$

Node III x

$\tag{8} 0={S_3}-{S_2}$

Node III y

$\tag{9} 0={S_7}$

Node IV x

$\tag{10} 0=-\frac{{S_8}}{\sqrt{2}}-{S_3}+{F_{\mathit{Bx}}}$

Node IV y

$\tag{11} 0=\frac{{S_8}}{\sqrt{2}}+{F_{\mathit{By}}}$

Node V x

$\tag{12} 0={S_9}-\frac{{S_4}}{\sqrt{2}}$

Node V y

$\tag{13} 0=-{S_5}-\frac{{S_4}}{\sqrt{2}}$

Node VI x

$\tag{14} 0=-F \cos{\left( \alpha \right) }-{S_9}+\frac{{S_8}}{\sqrt{2}}-\frac{{S_6}}{\sqrt{2}}$

Node VI y

$\tag{15} 0=-F \sin{\left( \alpha \right) }-\frac{{S_8}}{\sqrt{2}}-{S_7}-\frac{{S_6}}{\sqrt{2}}$

Equation (2) solved for FBx

$\tag{16} {F_{\mathit{Bx}}}=F \cos{\left( \alpha \right) }$

Equation (9) gives Zero-member S7

$\tag{17} {S_7}=0$

Equation (3) solved for FBy

$\tag{18} {F_{\mathit{By}}}=\frac{2 F \sin{\left( \alpha \right) }-F \cos{\left( \alpha \right) }}{3}$

FBy set in equation (1) ...

$\tag{19} 0=\frac{2 F \sin{\left( \alpha \right) }-F \cos{\left( \alpha \right) }}{3}-F \sin{\left( \alpha \right) }+{F_{\mathit{Ay}}}$

... and solved for FAy

$\tag{20} {F_{\mathit{Ay}}}=\frac{F \sin{\left( \alpha \right) }+F \cos{\left( \alpha \right) }}{3}$

In the following, the forces solved so far are inserted into the remaining equations and the unknowns are solved

$\tag{21} {S_4}=-\frac{\sqrt{2} F \sin{\left( \alpha \right) }+\sqrt{2} F \cos{\left( \alpha \right) }}{3}$

$\tag{22} {S_1}=\frac{F \sin{\left( \alpha \right) }+F \cos{\left( \alpha \right) }}{3}$

$\tag{23} {S_9}=-\frac{F \sin{\left( \alpha \right) }+F \cos{\left( \alpha \right) }}{3}$

$\tag{24} {S_5}=\frac{F \sin{\left( \alpha \right) }+F \cos{\left( \alpha \right) }}{3}$

$\tag{25} {S_8}=-\frac{{{2}^{\frac{3}{2}}} F \sin{\left( \alpha \right) }-\sqrt{2} F \cos{\left( \alpha \right) }}{3}$

$\tag{26} {S_3}=\frac{2 F \sin{\left( \alpha \right) }+2 F \cos{\left( \alpha \right) }}{3}$

$\tag{27} {S_6}=-\frac{\sqrt{2} F \sin{\left( \alpha \right) }+\sqrt{2} F \cos{\left( \alpha \right) }}{3}$

$\tag{28} {S_2}=\frac{2 F \sin{\left( \alpha \right) }+2 F \cos{\left( \alpha \right) }}{3}$

Resulting member forces and bearing loads

$\tag{29} {S_1}=4.55 \mathit{kN}$

$\tag{30} {S_2}=9.11 \mathit{kN}$

$\tag{31} {S_3}=9.11 \mathit{kN}$

$\tag{32} {S_4}=-6.44 \mathit{kN}$

$\tag{33} {S_5}=4.55 \mathit{kN}$

$\tag{34} {S_6}=-6.44 \mathit{kN}$

$\tag{35} {S_7}=0.0$

$\tag{36} {S_8}=-5.81 \mathit{kN}$

$\tag{37} {S_9}=-4.55 \mathit{kN}$

$\tag{38} {F_{\mathit{Ay}}}=4.55 \mathit{kN}$

$\tag{39} {F_{\mathit{By}}}=4.11 \mathit{kN}$

$\tag{40} {F_{\mathit{Bx}}}=5.0 \mathit{kN}$